Convergence Analysis of Piecewise Polynomial Collocation Methods for System of Weakly Singular Volterra Integral Equations of The First Kind
نویسندگان
چکیده
We study regularity of solutions of weakly singular Volterra integral equations of the first kind. We then study the numerical analysis of discontinuous piecewise polynomial collocation methods for solving such systems. The main purpose of this paper is the derivation of global convergent and super-convergent properties of introduced methods on the graded meshes. We apply relevant methods to a system of fractional differential equations and analyze them. The numerical experiments confirm the theoretical results.
منابع مشابه
The piecewise polynomial collocation method for nonlinear weakly singular Volterra equations
Second-kind Volterra integral equations with weakly singular kernels typically have solutions which are nonsmooth near the initial point of the interval of integration. Using an adaptation of the analysis originally developed for nonlinear weakly singular Fredholm integral equations, we present a complete discussion of the optimal (global and local) order of convergence of piecewise polynomial ...
متن کاملA Hybrid Collocation Method for Volterra Integral Equations with Weakly Singular Kernels
The commonly used graded piecewise polynomial collocation method for weakly singular Volterra integral equations may cause serious round-off error problems due to its use of extremely nonuniform partitions and the sensitivity of such time-dependent equations to round-off errors. The singularity preserving (nonpolynomial) collocation method is known to have only local convergence. To overcome th...
متن کاملConvergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
متن کاملDiscretization of Volterra Integral Equations
We show that various (discrete) methods for the approximate solution of Volterra (and Abel) integral equations of the first kind correspond to some discrete version of the method of (recursive) collocation in the space of (continuous) piecewise polynomials. In a collocation method no distinction has to be made between equations with regular or weakly singular kernels; the regularity or nonregul...
متن کاملConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کامل